mTOR Is Essential for the Proteotoxic Stress Response, HSF1 Activation and Heat Shock Protein Synthesis
نویسندگان
چکیده
The target of rapamycin (TOR) is a high molecular weight protein kinase that regulates many processes in cells in response to mitogens and variations in nutrient availability. Here we have shown that mTOR in human tissue culture cells plays a key role in responses to proteotoxic stress and that reduction in mTOR levels by RNA interference leads to increase sensitivity to heat shock. This effect was accompanied by a drastic reduction in ability to synthesize heat shock proteins (HSP), including Hsp70, Hsp90 and Hsp110. As HSP transcription is regulated by heat shock transcription factor 1 (HSF1), we examined whether mTOR could directly phosphorylate this factor. Indeed, we determined that mTOR could directly phosphorylate HSF1 on serine 326, a key residue in transcriptional activation. HSF1 was phosphorylated on S326 immediately after heat shock and was triggered by other cell stressors including proteasome inhibitors and sodium arsenite. Null mutation of S326 to alanine led to loss of ability to activate an HSF1-regulated promoter-reporter construct, indicating a direct role for mTOR and S326 in transcriptional regulation of HSP genes during stress. As mTOR is known to exist in at least two intracellular complexes, mTORC1 and mTOR2 we examined which complex might interact with HSF1. Indeed mTORC1 inhibitor rapamycin prevented HSF1-S326 phosphorylation, suggesting that this complex is involved in HSF1 regulation in stress. Our experiments therefore suggest a key role for mTORC1 in transcriptional responses to proteotoxic stress.
منابع مشابه
RhoA Activation Sensitizes Cells to Proteotoxic Stimuli by Abrogating the HSF1-Dependent Heat Shock Response
BACKGROUND The heat shock response (HSR) is an ancient and highly conserved program of stress-induced gene expression, aimed at reestablishing protein homeostasis to preserve cellular fitness. Cells that fail to activate or maintain this protective response are hypersensitive to proteotoxic stress. The HSR is mediated by the heat shock transcription factor 1 (HSF1), which binds to conserved hea...
متن کاملUnraveling Complex Interplay between Heat Shock Factor 1 and 2 Splicing Isoforms
Chaperone synthesis in response to proteotoxic stress is dependent on a family of transcription factors named heat shock factors (HSFs). The two main factors in this family, HSF1 and HSF2, are co-expressed in numerous tissues where they can interact and form heterotrimers in response to proteasome inhibition. HSF1 and HSF2 exhibit two alternative splicing isoforms, called α and β, which contrib...
متن کاملRepression of Heat Shock Transcription Factor HSF1 Activation by HSP90 (HSP90 Complex) that Forms a Stress-Sensitive Complex with HSF1
Heat shock and other proteotoxic stresses cause accumulation of nonnative proteins that trigger activation of heat shock protein (Hsp) genes. A chaperone/Hsp functioning as repressor of heat shock transcription factor (HSF) could make activation of hsp genes dependent on protein unfolding. In a novel in vitro system, in which human HSF1 can be activated by nonnative protein, heat, and geldanamy...
متن کاملAnti-malaria drug blocks proteotoxic stress response: anti-cancer implications.
The number of physical conditions and chemical agents induce accumulation of misfolded proteins creating proteotoxic stress. This leads to activation of adaptive pro-survival pathway, known as heat shock response (HSR), resulting in expression of additional chaperones. Several cancer treatment approaches, such as proteasome inhibitor Bortezomib and hsp90 inhibitor geldanamycin, involve activati...
متن کاملProtein quantity-quality balance licenses growth
One of the cellular defensivemechanisms against proteotoxic stress is the evolutionarily conserved proteotoxic stress response (PSR) or heat-shock response (HSR). Through up-regulation of molecular chaperones or heat-shock proteins (HSPs), the PSR empowers cells to repair and/or dispose of misfolded and aggregated proteins, thereby enduring stressful environments. Beyond being vital to stress r...
متن کامل